Tetrahedron equations, boundary states and the hidden structure of ${ }^{\mathscr{U}_{q}\left(D_{n}^{(1)}\right)}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42082002
(http://iopscience.iop.org/1751-8121/42/8/082002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.156
The article was downloaded on 03/06/2010 at 08:31

Please note that terms and conditions apply.

FAST TRACK COMMUNICATION

Tetrahedron equations, boundary states and the hidden structure of $\mathscr{U}_{q}\left(D_{n}^{(\mathbf{1})}\right)$

Sergey M Sergeev
Faculty of Informational Sciences and Engineering, University of Canberra, Bruce ACT 2601, Australia
E-mail: sergey.sergeev@canberra.edu.au

Received 4 December 2008, in final form 7 January 2009
Published 27 January 2009
Online at stacks.iop.org/JPhysA/42/082002

Abstract

Simple periodic 3D $\rightarrow 2 \mathrm{D}$ compactification of the tetrahedron equations gives the Yang-Baxter equations for various evaluation representations of $\mathscr{U}_{q}\left(\widehat{s l}_{n}\right)$. In this paper we construct an example of fixed non-periodic $3 D$ boundary conditions producing a set of Yang-Baxter equations for $\mathscr{U}_{q}\left(D_{n}^{(1)}\right)$. These boundary conditions resemble a fusion in the hidden direction.

PACS numbers: 02.20.Uw, 75.10.Pq
Mathematics Subject Classification: 81Rxx, 17B80

The tetrahedron equation can be viewed as a local condition providing existence of an infinite series of Yang-Baxter equations. In the applications to quantum groups the method of the tetrahedron equation is a powerful tool for the generation of R-matrices and L operators for various 'higher spin' evaluation representations. In the framework of the elder Zamolodchikov-Bazhanov-Baxter and related models and $\mathscr{U}_{q}\left(\widehat{s l}_{n}\right)$ this has been known for a long time, see e.g. $[1,2,5,6]$. In the framework of the more novel q-oscillator model it has

The main principle producing the cyclic $\widehat{s l}_{n}$ structure is the trace of three-dimensional monodromy operators in the hidden 'third' direction. In this paper we introduce another nonperiodic boundary condition for the q-oscillator scheme, namely specific fixed boundary states in the hidden direction still providing the existence of effective Yang-Baxter equations with multiplicative spectral parameters. This is a new example of three-dimensional integrable boundary conditions producing the spectral decomposition of commutative layer-to-layer transfer matrices.

We shall start with a short reminder of a (super-)tetrahedron equation and $\widehat{s l_{n}}$ compactification in their elementary form. The simplest known tetrahedron equation in the tensor product of six spaces $B_{1} \otimes F_{2} \otimes \cdots \otimes F_{5} \otimes B_{6}$ is

$$
\begin{equation*}
\mathrm{R}_{B_{1} F_{2} F_{3}} \mathrm{R}_{B_{1} F_{4} F_{5}} \mathrm{R}_{F_{2} F_{4} B_{6}} \mathrm{R}_{F_{3} F_{5} B_{6}}=\mathrm{R}_{F_{3} F_{5} B_{6}} \mathrm{R}_{F_{2} F_{4} B_{6}} \mathrm{R}_{B_{1} F_{4} F_{5}} \mathrm{R}_{B_{1} F_{2} F_{3}}, \tag{1}
\end{equation*}
$$

where $F_{i}=\{|0\rangle,|1\rangle\}_{i}$ is a representation space of the Fermi oscillator

$$
\begin{equation*}
f^{+}|0\rangle=|1\rangle, \quad f^{-}|1\rangle=|0\rangle \tag{2}
\end{equation*}
$$

Odd operators $f_{i}^{ \pm}$in different components i of their tensor product anti-commute and $\left(f_{i}^{ \pm}\right)^{2}=0$. It is convenient to introduce projectors

$$
\begin{equation*}
M_{i}=f_{i}^{+} f_{i}^{-}, \quad M_{i}^{0}=f_{i}^{-} f_{i}^{+}, \quad\left[f_{i}^{+}, f_{i}^{-}\right]_{+}=M_{i}^{0}+M_{i}=1 \tag{3}
\end{equation*}
$$

Operator \boldsymbol{M}_{i}^{0} is the projector to the vacuum, \boldsymbol{M}_{i} is the occupation number and $\boldsymbol{M}^{0} \boldsymbol{M}=0$.
Space B_{i} stands for representation space of the i th copy of the q-oscillator,

$$
\begin{equation*}
\boldsymbol{b}^{+} \boldsymbol{b}^{-}=1-q^{2 \boldsymbol{N}}, \quad \boldsymbol{b}^{-} \boldsymbol{b}^{+}=1-q^{2 \boldsymbol{N}+2}, \quad q^{\boldsymbol{N}} \boldsymbol{b}^{ \pm}=\boldsymbol{b}^{ \pm} q^{\boldsymbol{N} \pm 1} \tag{4}
\end{equation*}
$$

In this paper we imply the unitary Fock space representation, $\left(\boldsymbol{b}^{-}\right)^{\dagger}=\boldsymbol{b}^{+}$, defined by
$N|n\rangle=|n\rangle n, \quad b^{-}|0\rangle=0, \quad|n\rangle=\frac{b^{+n}}{\sqrt{\left(q^{2} ; q^{2}\right)_{n}}}|0\rangle, \quad n \geqslant 0$,
where $\left(x ; q^{2}\right)_{n}=(1-x)\left(1-q^{2} x\right) \cdots\left(1-q^{2 n-2} x\right)$. In terms of creation, annihilation and occupation number operators the R-matrices in (1) are given [8] by
$\mathrm{R}_{B_{1} F_{2} F_{3}}=\boldsymbol{M}_{2}^{0} \boldsymbol{M}_{3}^{0}-q^{\boldsymbol{N}_{1}+1} \boldsymbol{M}_{2} \boldsymbol{M}_{3}^{0}+q^{\boldsymbol{N}_{1}} \boldsymbol{M}_{2}^{0} \boldsymbol{M}_{3}-\boldsymbol{M}_{2} \boldsymbol{M}_{3}+\boldsymbol{b}_{1}^{-} \boldsymbol{f}_{2}^{+} \boldsymbol{f}_{3}^{-}-\boldsymbol{b}_{1}^{+} \boldsymbol{f}_{2}^{-} \boldsymbol{f}_{3}^{+}$
and
$\mathrm{R}_{F_{1} F_{2} B_{3}}=\boldsymbol{M}_{1}^{0} \boldsymbol{M}_{2}^{0}+\boldsymbol{M}_{1} \boldsymbol{M}_{2}^{0} q^{\boldsymbol{N}_{1}+1}-\boldsymbol{M}_{1}^{0} \boldsymbol{M}_{2} q^{\boldsymbol{N}_{1}}-\boldsymbol{M}_{2} \boldsymbol{M}_{3}+\boldsymbol{f}_{1}^{+} \boldsymbol{f}_{2}^{-} \boldsymbol{b}_{3}^{-}-\boldsymbol{f}_{1}^{-} \boldsymbol{f}_{2}^{+} \boldsymbol{b}_{3}^{+}$.
Both operators R are unitary roots of unity. The constant tetrahedron equation (1) can be verified in the operator language straightforwardly.

Define next the 'monodromy' of R-matrices as the ordered product

$$
\begin{equation*}
\mathrm{R}_{\Delta_{n}\left(B_{1} F_{2}\right), F_{3}}=\mathrm{R}_{B_{1: 1} F_{2: 1} F_{3}} \mathrm{R}_{B_{1: 2} F_{2: 2} F_{3}} \cdots \mathrm{R}_{B_{1: n} F_{2: n} F_{3}} \leftrightharpoons \prod_{j=1 . . n}^{\curvearrowright} \mathrm{R}_{B_{1: j} F_{2: j} F_{3}} . \tag{8}
\end{equation*}
$$

Here the convenient 'co-product' notation stands for a tensor power of corresponding spaces,

$$
\begin{equation*}
\Delta_{n}\left(B_{1}\right)=\stackrel{@}{j=1}_{\otimes}^{\otimes} B_{1: j}, \quad \Delta_{n}\left(F_{2}\right)=\bigotimes_{j=1}^{n} F_{2: j} . \tag{9}
\end{equation*}
$$

The repeated use of (1) provides
$\mathrm{R}_{\Delta_{n}\left(B_{1} F_{2}\right), F_{3}} \mathrm{R}_{\Delta_{n}\left(B_{1} F_{4}\right), F_{5}} \mathrm{R}_{\Delta_{n}\left(F_{2} F_{4}\right), B_{6}} \mathrm{R}_{F_{3} F_{5} B_{6}}=\mathrm{R}_{F_{3} F_{5} B_{6}} \mathrm{R}_{\Delta_{n}\left(F_{2} F_{4}\right), B_{6}} \mathrm{R}_{\Delta_{n}\left(B_{1} F_{4}\right), F_{5}} \mathrm{R}_{\Delta_{n}\left(B_{1} F_{2}\right), F_{3}}$.

Note the conservation laws

$$
\begin{equation*}
v^{-M_{3}} u^{-M_{5}}\left(\frac{u}{v}\right)^{N_{6}} \mathrm{R}_{F_{3} F_{5} B_{6}}=\mathrm{R}_{F_{3} F_{5} B_{6}} v^{-M_{3}} u^{-M_{5}}\left(\frac{u}{v}\right)^{N_{6}} . \tag{11}
\end{equation*}
$$

Multiplying (10) by the u, v-term in $F_{3} \otimes F_{5} \otimes B_{6}$ and by $\mathrm{R}_{F_{3} F_{5} B_{6}}^{-1}$, and making then the traces over $F_{3} \otimes F_{5} \otimes B_{6}$, we come to the Yang-Baxter equation
$L_{\Delta_{n}\left(B_{1} F_{2}\right)}(v) L_{\Delta_{n}\left(B_{1} F_{4}\right)}(u) R_{\Delta_{n}\left(F_{2} F_{4}\right)}(u / v)=R_{\Delta_{n}\left(F_{2} F_{4}\right)}(u / v) L_{\Delta_{n}\left(B_{1} F_{4}\right)}(u) L_{\Delta_{n}\left(B_{1} F_{2}\right)}(v)$,
where
$L_{\Delta_{n}\left(B_{1} F_{2}\right)}(v)=\operatorname{Str}_{F_{3}}\left(v^{-M_{3}} \mathrm{R}_{\Delta_{n}\left(B_{1} F_{2}\right), F_{3}}\right), \quad R_{\Delta_{n}\left(F_{2} F_{4}\right)}(w)=\operatorname{Tr}_{B_{6}}\left(w^{N_{6}} \mathrm{R}_{\Delta_{n}\left(F_{2} F_{4}\right), B_{6}}\right)$.
This is the case of $\mathscr{U}_{q}\left(\widehat{s l}_{n}\right)$. Two-dimensional R-matrices (13) have the centers

$$
\begin{equation*}
J_{i}=\sum_{j=1}^{n} \boldsymbol{M}_{i: j} \quad \text { for fermions and } J_{1}=\sum_{j=1}^{n} \boldsymbol{N}_{1: j} \quad \text { for bosons } . \tag{14}
\end{equation*}
$$

Irreducible components of R-matrices and L-operators (13) correspond to fixed values of J_{i}. In particular, $\Delta_{n}(F)$ is the sum of all antisymmetric tensor representations of $s l_{n}$,

$$
\begin{equation*}
\operatorname{dim} \Delta_{n}(F)=2^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \tag{15}
\end{equation*}
$$

The Dirac spinor representation of D_{n} has the same dimension 2^{n}, it is the direct sum of two irreducible Weyl spinors with dimensions 2^{n-1}. It is evident intuitively, the structure of D_{n} will appear if the total occupation number J of $\Delta_{n}(F)$ is not a center of L-operators and R-matrices, but all operators preserve just the parity of J. Also, since the dimension of the vector representation of D_{n} is $2 n$, we need to double the number of bosons.

Consider now two copies of (1) and further of (10) glued in the 'second' direction. This consideration keeps the desired space $\Delta_{n}(F)$ and doubles the number of bosons. The repeated use of (1) provides
$\mathrm{R}_{\Delta\left(B_{1}\right) F_{2} \Delta\left(F_{3}\right)} \mathrm{R}_{\Delta\left(B_{1}\right) F_{4} \Delta\left(F_{5}\right)} \mathrm{R}_{F_{2} F_{3} B_{6}} \mathrm{R}_{\Delta^{\prime}\left(F_{3} F_{5}\right) B_{6}}=\mathrm{R}_{\Delta^{\prime}\left(F_{3} F_{5}\right) B_{6}} \mathrm{R}_{F_{2} F_{3} B_{6}} \mathrm{R}_{\Delta\left(B_{1}\right) F_{4} \Delta\left(F_{5}\right)} \mathrm{R}_{\Delta\left(B_{1}\right) F_{2} \Delta\left(F_{3}\right)}$,
where
$\mathrm{R}_{\Delta\left(B_{1}\right) F_{2} \Delta\left(F_{3}\right)}=\mathrm{R}_{B_{1} F_{2} F_{3}} \mathrm{R}_{B_{1}^{\prime} F_{2} F_{3}^{\prime}} \quad$ and $\quad \mathrm{R}_{\Delta^{\prime}\left(F_{3} F_{5}\right) B_{6}}=\mathrm{R}_{F_{3}^{\prime} F_{5}^{\prime} B_{6}} \mathrm{R}_{F_{3} F_{5} B_{6}}$.
The key observation is the existence of a family of eigenvectors of operator $\mathrm{R}_{\Delta^{\prime}\left(F_{3} F_{5}\right) B_{6}}$:
$\mathrm{R}_{\Delta^{\prime}\left(F_{3} F_{5}\right) B_{6}}\left|\psi_{\Delta\left(F_{3}\right)}(v) \psi_{\Delta\left(F_{5}\right)}(u) \psi_{B_{6}}(u / v)\right\rangle=\left|\psi_{\Delta\left(F_{3}\right)}(v) \psi_{\Delta\left(F_{5}\right)}(u) \psi_{B_{6}}(u / v)\right\rangle$,
where

$$
\begin{equation*}
\Delta(F)=F^{\prime} \otimes F, \quad\left|\psi_{\Delta(F)}(v)\right\rangle=\left(1+v^{-1} \boldsymbol{f}^{+\prime} \boldsymbol{f}^{+}\right)|0\rangle \tag{19}
\end{equation*}
$$

and the state $\psi_{B}(w)$ satisfies $\left(\boldsymbol{b}^{-}-w \boldsymbol{b}^{+}\right)\left|\psi_{B}(w)\right\rangle=0$; in the unitary basis (3) its matrix elements are

$$
\begin{equation*}
\left\langle 2 k+1 \mid \psi_{B}(w)\right\rangle=0, \quad\left\langle 2 k \mid \psi_{B}(w)\right\rangle=w^{k} \sqrt{\frac{\left(q^{2} ; q^{4}\right)_{k}}{\left(q^{4} ; q^{4}\right)_{k}}} \tag{20}
\end{equation*}
$$

The normalization of ψ_{B} is given by

$$
\begin{equation*}
\left\langle\bar{\psi}_{B}(w)\right|\left(\boldsymbol{b}^{ \pm}\right)^{2 m}\left|\psi_{B}(w)\right\rangle=w^{m} \frac{\left(q^{2+4 m} w^{2} ; q^{4}\right)_{\infty}}{\left(w^{2} ; q^{4}\right)_{\infty}} \tag{21}
\end{equation*}
$$

Another property of $\left|\psi_{B}\right\rangle$ is

$$
\begin{equation*}
R_{B_{1}, B_{2}, B_{3}}\left|\psi_{B_{1}}(v) \psi_{B_{2}}(u) \psi_{B_{3}}(u / v)\right\rangle=\left|\psi_{B_{1}}(v) \psi_{B_{2}}(u) \psi_{B_{3}}(u / v)\right\rangle . \tag{22}
\end{equation*}
$$

Analytical proof of this formula is rather complicated.
Considering now a length- n chain of (16) in the 'third' direction and applying vectors $\psi_{\Delta\left(F_{3}\right)}(u), \psi_{\Delta\left(F_{5}\right)}(v)$ and $\psi_{B}(u / v)$, we come to the Yang-Baxter equation

$$
\begin{align*}
& L_{\Delta_{n}\left(\Delta\left(B_{1}\right) F_{2}\right)}(v) L_{\Delta_{n}\left(\Delta\left(B_{1}\right) F_{4}\right)}(u) R_{\Delta_{n}\left(F_{2} F_{4}\right)}(u / v) \\
& =R_{\Delta_{n}\left(F_{2} F_{4}\right)}(u / v) L_{\Delta_{n}\left(\Delta\left(B_{1}\right) F_{4}\right)}(u) L_{\Delta_{n}\left(\Delta\left(B_{1}\right) F_{2}\right)}(v) \tag{23}
\end{align*}
$$

without trace construction

$$
\begin{equation*}
L_{\Delta_{n}\left(\Delta\left(B_{1}\right) F_{2}\right)}(v)=\left\langle\bar{\psi}_{\Delta\left(F_{3}\right)}(v)\right| \mathrm{R}_{\Delta_{n}\left(\Delta\left(B_{1}\right) F_{2}\right), \Delta\left(F_{3}\right)}\left|\psi_{\Delta\left(F_{3}\right)}(v)\right\rangle \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\Delta_{n}\left(F_{2} F_{4}\right)}(w)=\left\langle\bar{\psi}_{B_{6}}(w)\right| \mathrm{R}_{\Delta_{n}\left(F_{2} F_{4}\right), B_{6}}\left|\psi_{B_{6}}(w)\right\rangle \tag{25}
\end{equation*}
$$

Matrix elements of $R_{\Delta_{n}\left(F_{2} F_{4}\right)}(w)$ can be calculated with the help of (21) and similar identities. The invariants of L-operator (24) and R-matrix (25) are the parity of $J_{2}=\sum M_{2: j}$, similar parity of J_{4} and

$$
\begin{equation*}
J_{1}=\sum_{j=1}^{n}\left(\boldsymbol{N}_{1: j}-\boldsymbol{N}_{1: j}^{\prime}\right) . \tag{26}
\end{equation*}
$$

A choice of different spectral parameters in bra- and ket-vectors in (24) and (25) is equivalent to the choice of equal spectral parameters by means of a gauge transformation.

The structure of D_{n} representation ring can be verified explicitly by a direct calculation of matrix elements of R-matrix (25) for small n and check of factor powers of $\operatorname{det}(\lambda-R)$.

As to $2 n$-bosons space, irreducible components of $\Delta_{n}\left(\Delta\left(B_{1}\right)\right)$ are in general infinite dimensional. However, a choice of Fock and anti-Fock space representations, $\operatorname{Spectrum}\left(\boldsymbol{N}_{1: j}\right)=0,1,2, \ldots$ and $\operatorname{Spectrum}\left(\boldsymbol{N}_{1: j}^{\prime}\right)=-1,-2,-3, \ldots$, makes $\Delta_{n}\left(\Delta\left(B_{1}\right)\right)$ a direct sum of symmetric tensors of $O(2 n)$.

The main result of this paper is a step forward to a classification of integrable boundary conditions in three-dimensional models. At least two scenarios are hitherto known: the quasi-periodic boundary condition (13) and the boundary states condition (24) and (25). These conditions can be imposed for a layer-to-layer transfer matrix in different directions independently. In both scenarios the spectral parameters of effective two-dimensional models reside in the boundary. Also, the boundary admits twists making the quantum groups classification inapplicable [7]. It is worth noting one more possible scenario of integrable boundary conditions: yet unknown $3 D$ reflection operators satisfying the tetrahedron reflection equations [4].

Acknowledgment

I would like to thank all staff of the Faculty of Information Science for their support.

References

[1] Bazhanov V V and Baxter R J 1992 New solvable lattice models in three-dimensions J. Statist. Phys. 69 453-585
[2] Bazhanov V V, Kashaev R M, Mangazeev V V and Stroganov Yu G $1991\left(Z_{N} \times\right)^{n-1}$ generalization of the chiral Potts model Commun. Math. Phys. 138 393-408
[3] Bazhanov V V and Sergeev S M 2006 Zamolodchikov's tetrahedron equation and hidden structure of quantum groups J. Phys. A: Math. Gen. 39 3295-310
[4] Isaev A P and Kulish P P 1997 Tetrahedron reflection equations Mod. Phys. Lett. A 12 427-37
[5] Isaev A P and Sergeev S M 2003 Quantum Lax operators and discrete ($2+1$)-dimensional integrable models Lett. Math. Phys. 64 57-64
[6] Maillard J-M and Sergeev S M 1997 Three-dimensional integrable models based on modified tetrahedron equations and quantum dilogarithm Phys. Lett. B 405 55-63
[7] Sergeev S 2006 Ansatz of Hans Bethe for a two-dimensional lattice Bose gas J. Phys. A: Math. Gen. 39 3035-45
[8] Sergeev S M 2008 Super-tetrahdera and super-algebras arXiv:0805.4653

