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Abstract

Simple periodic 3D → 2D compactification of the tetrahedron equations gives
the Yang–Baxter equations for various evaluation representations of Uq(ŝln).
In this paper we construct an example of fixed non-periodic 3D boundary
conditions producing a set of Yang–Baxter equations for Uq

(
D(1)

n

)
. These

boundary conditions resemble a fusion in the hidden direction.

PACS numbers: 02.20.Uw, 75.10.Pq
Mathematics Subject Classification: 81Rxx, 17B80

The tetrahedron equation can be viewed as a local condition providing existence of an
infinite series of Yang–Baxter equations. In the applications to quantum groups the method
of the tetrahedron equation is a powerful tool for the generation of R-matrices and L-
operators for various ‘higher spin’ evaluation representations. In the framework of the elder
Zamolodchikov–Bazhanov–Baxter and related models and Uq(ŝln) this has been known for a
long time, see e.g. [1, 2, 5, 6]. In the framework of the more novel q-oscillator model it has
been demonstrated in [3] for Uq(ŝln) and in [8] for super-algebras Uq(ĝln|m).

The main principle producing the cyclic ŝln structure is the trace of three-dimensional
monodromy operators in the hidden ‘third’ direction. In this paper we introduce another non-
periodic boundary condition for the q-oscillator scheme, namely specific fixed boundary states
in the hidden direction still providing the existence of effective Yang–Baxter equations with
multiplicative spectral parameters. This is a new example of three-dimensional integrable
boundary conditions producing the spectral decomposition of commutative layer-to-layer
transfer matrices.

We shall start with a short reminder of a (super-)tetrahedron equation and ŝln
compactification in their elementary form. The simplest known tetrahedron equation in
the tensor product of six spaces B1 ⊗ F2 ⊗ · · · ⊗ F5 ⊗ B6 is

RB1F2F3 RB1F4F5 RF2F4B6 RF3F5B6 = RF3F5B6 RF2F4B6 RB1F4F5 RB1F2F3 , (1)
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where Fi = {|0〉, |1〉}i is a representation space of the Fermi oscillator

f+|0〉 = |1〉, f−|1〉 = |0〉. (2)

Odd operators f±
i in different components i of their tensor product anti-commute and(

f±
i

)2 = 0. It is convenient to introduce projectors

M i = f+
i f

−
i , M 0

i = f−
i f+

i ,
[
f+

i ,f
−
i

]
+ = M 0

i + M i = 1. (3)

Operator M 0
i is the projector to the vacuum, M i is the occupation number and M 0M = 0.

Space Bi stands for representation space of the ith copy of the q-oscillator,

b+b− = 1 − q2N , b−b+ = 1 − q2N+2, qNb± = b±qN±1. (4)

In this paper we imply the unitary Fock space representation, (b−)† = b+, defined by

N |n〉 = |n〉n, b−|0〉 = 0, |n〉 = b+n√
(q2; q2)n

|0〉, n � 0, (5)

where (x; q2)n = (1 − x)(1 − q2x) · · · (1 − q2n−2x). In terms of creation, annihilation and
occupation number operators the R-matrices in (1) are given [8] by

RB1F2F3 = M 0
2M

0
3 − qN 1+1M 2M

0
3 + qN 1M 0

2M 3 − M 2M 3 + b−
1 f+

2f
−
3 − b+

1f
−
2 f+

3 (6)

and

RF1F2B3 = M 0
1M

0
2 + M 1M

0
2q

N 1+1 − M 0
1M 2q

N 1 − M 2M 3 + f+
1f

−
2 b−

3 − f−
1 f+

2b
+
3 . (7)

Both operators R are unitary roots of unity. The constant tetrahedron equation (1) can be
verified in the operator language straightforwardly.

Define next the ‘monodromy’ of R-matrices as the ordered product

R�n(B1F2),F3 = RB1:1F2:1F3 RB1:2F2:2F3 · · · RB1:nF2:nF3 �
�∏

j=1..n

RB1:j F2:j F3 . (8)

Here the convenient ‘co-product’ notation stands for a tensor power of corresponding spaces,

�n(B1) = n⊗
j=1

B1:j , �n(F2) = n⊗
j=1

F2:j . (9)

The repeated use of (1) provides

R�n(B1F2),F3 R�n(B1F4),F5 R�n(F2F4),B6 RF3F5B6 = RF3F5B6 R�n(F2F4),B6 R�n(B1F4),F5 R�n(B1F2),F3 .

(10)

Note the conservation laws

v−M 3u−M 5

(u

v

)N 6

RF3F5B6 = RF3F5B6v
−M 3u−M 5

(u

v

)N 6

. (11)

Multiplying (10) by the u, v-term in F3 ⊗ F5 ⊗ B6 and by R−1
F3F5B6

, and making then the traces
over F3 ⊗ F5 ⊗ B6, we come to the Yang–Baxter equation

L�n(B1F2)(v)L�n(B1F4)(u)R�n(F2F4)(u/v) = R�n(F2F4)(u/v)L�n(B1F4)(u)L�n(B1F2)(v), (12)

where

L�n(B1F2)(v) = Str
F3

(
v−M 3 R�n(B1F2),F3

)
, R�n(F2F4)(w) = Tr

B6

(
wN 6 R�n(F2F4),B6

)
. (13)

This is the case of Uq(ŝln). Two-dimensional R-matrices (13) have the centers

Ji =
n∑

j=1

M i:j for fermions and J1 =
n∑

j=1

N 1:j for bosons. (14)
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Irreducible components of R-matrices and L-operators (13) correspond to fixed values of Ji .
In particular, �n(F ) is the sum of all antisymmetric tensor representations of sln,

dim �n(F ) = 2n =
n∑

k=0

n!

k!(n − k)!
. (15)

The Dirac spinor representation of Dn has the same dimension 2n, it is the direct sum of
two irreducible Weyl spinors with dimensions 2n−1. It is evident intuitively, the structure of
Dn will appear if the total occupation number J of �n(F ) is not a center of L-operators and
R-matrices, but all operators preserve just the parity of J . Also, since the dimension of the
vector representation of Dn is 2n, we need to double the number of bosons.

Consider now two copies of (1) and further of (10) glued in the ‘second’ direction. This
consideration keeps the desired space �n(F ) and doubles the number of bosons. The repeated
use of (1) provides

R�(B1)F2�(F3)R�(B1)F4�(F5)RF2F3B6 R�′(F3F5)B6 = R�′(F3F5)B6 RF2F3B6 R�(B1)F4�(F5)R�(B1)F2�(F3),

(16)

where

R�(B1)F2�(F3) = RB1F2F3
RB ′

1F2F
′
3

and R�′(F3F5)B6 = RF ′
3F

′
5B6

RF3F5B6
. (17)

The key observation is the existence of a family of eigenvectors of operator R�′(F3F5)B6 :

R�′(F3F5)B6 |ψ�(F3)(v)ψ�(F5)(u)ψB6(u/v)〉 = ∣∣ψ�(F3)(v)ψ�(F5)(u)ψB6(u/v)
〉
, (18)

where

�(F) = F ′ ⊗ F, |ψ�(F)(v)〉 = (1 + v−1f+′f+)|0〉, (19)

and the state ψB(w) satisfies (b− − wb+)|ψB(w)〉 = 0; in the unitary basis (3) its matrix
elements are

〈2k + 1|ψB(w)〉 = 0, 〈2k|ψB(w)〉 = wk

√
(q2; q4)k

(q4; q4)k
. (20)

The normalization of ψB is given by

〈ψB(w)|(b±)2m|ψB(w)〉 = wm (q2+4mw2; q4)∞
(w2; q4)∞

. (21)

Another property of |ψB〉 is

RB1,B2,B3

∣∣ψB1(v)ψB2(u)ψB3(u/v)
〉 = ∣∣ψB1(v)ψB2(u)ψB3(u/v)

〉
. (22)

Analytical proof of this formula is rather complicated.
Considering now a length-n chain of (16) in the ‘third’ direction and applying vectors

ψ�(F3)(u), ψ�(F5)(v) and ψB(u/v), we come to the Yang–Baxter equation

L�n(�(B1)F2)(v)L�n(�(B1)F4)(u)R�n(F2F4)(u/v)

= R�n(F2F4)(u/v)L�n(�(B1)F4)(u)L�n(�(B1)F2)(v) (23)

without trace construction

L�n(�(B1)F2)(v) = 〈
ψ�(F3)

(v)
∣∣R�n(�(B1)F2),�(F3)

∣∣ψ�(F3)(v)
〉

(24)

and

R�n(F2F4)(w) = 〈
ψB6

(w)
∣∣R�n(F2F4),B6

∣∣ψB6(w)
〉
. (25)
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Matrix elements of R�n(F2F4)(w) can be calculated with the help of (21) and similar identities.
The invariants of L-operator (24) and R-matrix (25) are the parity of J2 = ∑

M 2:j , similar
parity of J4 and

J1 =
n∑

j=1

(N 1:j − N ′
1:j ). (26)

A choice of different spectral parameters in bra- and ket-vectors in (24) and (25) is equivalent
to the choice of equal spectral parameters by means of a gauge transformation.

The structure of Dn representation ring can be verified explicitly by a direct calculation
of matrix elements of R-matrix (25) for small n and check of factor powers of det(λ − R).

As to 2n-bosons space, irreducible components of �n(�(B1)) are in general
infinite dimensional. However, a choice of Fock and anti-Fock space representations,
Spectrum(N 1:j ) = 0, 1, 2, . . . and Spectrum(N ′

1:j ) = −1,−2,−3, . . . , makes �n(�(B1)) a
direct sum of symmetric tensors of O(2n).

The main result of this paper is a step forward to a classification of integrable boundary
conditions in three-dimensional models. At least two scenarios are hitherto known: the
quasi-periodic boundary condition (13) and the boundary states condition (24) and (25).
These conditions can be imposed for a layer-to-layer transfer matrix in different directions
independently. In both scenarios the spectral parameters of effective two-dimensional models
reside in the boundary. Also, the boundary admits twists making the quantum groups
classification inapplicable [7]. It is worth noting one more possible scenario of integrable
boundary conditions: yet unknown 3D reflection operators satisfying the tetrahedron reflection
equations [4].
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